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Thermal electrical fluctuations around a charged colloidal cylinder in an electrolyte

JoséA. Fornés
Instituto de Fı´sica, Universidade Federal de Goia´s, Caixa Postal 131, 74001-970 Goiaˆnia, GO, Brazil

~Received 12 May 1997!

We apply the method developed in by J. Forne´s @J. Colloid Interface Sci.186, 90 ~1997!# to determine the
natural electrical thermal fluctuations and their spectral distribution across two points near a charged colloidal
cylinder in a (z2z) symmetrical electrolyte. For the general case we performed a numerical integration of the
Poisson-Boltzmann equation. For the case of low potentials the Debye-Hu¨ckel approximation allowed for
analytical evaluation. We find a decrease of electrical fluctuations as cylinder radii increase. Consequently,
large particles produce electrical stabilization in their neighborhood. It can also be observed that the fluctua-
tions are not sensitive to ionic concentrations for large particles.@S1063-651X~98!01602-X#

PACS number~s!: 87.15.Da
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I. INTRODUCTION

The importance of electrical fluctuations in biological sy
tems was raised by several authors, see bibliography in@1#
for references on this subject. In@1# we developed a metho
to determine the natural electrical thermal fluctuations a
their spectral distribution across two points in the neighb
hood of a spherical electrically charged particle immersed
an ionic solution. The essence of the method is to cons
the charged sphere with its surrounding ionic atmospher
a capacitor and a resistor in parallel.

In this paper we apply this method to estimate the elec
cal fluctuations~field and potential! around rodlike rigid
polyelectrolyte bearing uniform surface charge distribut
dispersed in an aqueous salt solution of pointlike ions.
performed computer simulations to solve the Poiss
Boltzmann ~PB! equation and also developed formulas
calculate the fluctuations in the case of a low potent
Debye-Hückel approximation~linearized PB equation!. We
apply the formalism to a DNA solution, which is a wel
known model for a biopolymer. We show plots of the pote
tial and electric field fluctuations as a function of the Deby
Hückel lengthk21 and distanced from the polyelectrolyte
surface for several molecular sizes.

II. ELECTRICAL FLUCTUATIONS PERPENDICULAR
TO THE POLYELECTROLYTE AXIS

We consider a rigid rodlike molecule or particle of radi
a ~for an excellent bibliography on this subject see Ref.@2#!,
length L@a, so that end effects may be neglected, with
chargeQ distributed uniformly over the surface with an ele
trical surface potentialc0 immersed in a solution of pointlike
ions of a symmetrical electrolyte of valencez with n ions per
m3. The law governing the potential profile and cons
quently the ionic distribution~‘‘diffuse’’ layer ! from the sur-
face of the particle is given by the PB equation

Dc5
2ze0n

ee0
sinhS ze0c

kT D , ~1!

whereD is, in our case of cylinder symmetry, the radial pa
of the Laplace operator.„The origin of this equation is the
571063-651X/98/57~2!/2104~6!/$15.00
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Poisson equationDc52r/ee0 with r5ze0(n12n2)
5nze0@exp(2ze0c/kT)2exp(ze0c/kT)#522nze0sinh(ze0c/kT),
with n1 andn2 being theaverageconcentration of the ions.…

Equation~1! can be written, following Stigter@3#, as

1

x

d

dxS x
dy

dxD5sinh~y!, ~2!

wherey5ze0c/kT andx5kr are the dimensionless poten
tial and distance, respectively,r being the distance from the
cylinder axis, perpendicular to the surface. At the surface
the cylinderx5x05ka andy5y05ze0c0 /kT.

The SI system of units was employed throughout, in E
~1! e0 is the permittivity of vacuum (e058.85310212

C2 N21 m22), e is the dielectric constant of the medium,e0
the electron charge (e051.602310219 C!, andk, called the
Debye-Hu¨ckel reciprocal lengthparameter@5#, is given by

k25
e0

2

ee0kT( h i0zi
25

2000e0
2NA

ee0kT F1

2( cizi
2G . ~3!

The quantityI 5 1
2 (cizi

2 quantifies the charge in an electro
lyte solution and is called theionic strengthafter Lewis and
Randall@6#. In the case of a solution of a symmetrical (z2z)
electrolyte we have

k25
2~e0z!2

e0ekT
n5103

2~e0z!2

e0ekT
NAc, ~4!

wherek is Boltzmann’s constant (k51.381310223 J/K!, T
is the absolute temperature,NA is Avogadro’s constant, and
c the solution concentration in moles/liter.

In case the ratio of the electrical to the thermal energy
the ions is very small, namely,

ze0c~r !

kT
!1, y!1, ~5!

„This condition comes to approximate sinh@ze0c(r )/kT#
'ze0c(r )/kT in the Poisson-Boltzmann equation.… Equation
~2! transforms, sinh(y)5y, into the modified Bessel equatio
of zeroth order, with the boundary conditions (x,y)5(`,0)
and
2104 © 1998 The American Physical Society
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S dy

dxD
x0

52S s

ee0
D S ze0

kTk D52
Qze0

2px0Lee0kT
. ~6!

This last condition comes from Gauss’s electric flux theor
with the surface charge densitys5Q/(2paL). The analytic
solution ~Debye-Hückel approximation! satisfying the
former boundary conditions is

y5y~DH!5S ze0

kT D Q

2pLee0x0K1~x0!
K0~x!. ~7!

The corresponding derivative function is

dy~DH!

dx
52S ze0

kT D Q

2pLee0x0K1~x0!
K1~x!. ~8!

In the former equationsK0(x) and K1(x) are the modified
Bessel functions of zeroth and first order, respectively.
y→0, Eq. ~7! is an exact solution of Eq.~2!.

It is necessary to formulate a few definitions in order
put the equations into the current nomenclature of polye
trolyte science, namely,

l5
Q

L
5

e0

b
5S e0

l B
D j0 , ~9!

wherel is the linear charge density,b5L/N is the linear
charge spacing, andN is the number of charged polyme
groups. TheBjerrum length lB is the distance at which th
Coulombic energy is equal tokT ( l B57.13 Å at 25 °C in
water! ~for an excellent English reference on this subject
@7#! namely,

l B5
e0

2

4pee0kT
5j0b. ~10!

The dimensionless ratioj0, which is a reduced linear charg
density, is particularly useful@a DNA molecule, for instance
has two phosphate charges each at a helical spacing of
Å, then j05 l B /b57.133(2/3.37)54.23]. As a conse-
quence the surface charge density can be written as

s5
l

2pa
5S e0

2palB
D j0 . ~11!

For DNA, a512.5 Å, Eq.~11! givess57.5531017 electric
charges m22, which is 28 times less than that for a bidime
sional array of Cu atoms.

Also theDebye-Hu¨ckel reciprocal lengthparameterk @cf.
Eq. ~4!# can be written as

k258pz2l Bn510338pz2l BNAc. ~12!

Applying the former definitions Eqs.~6!–~8! transform in

S dy

dxD
x0

52
2zj0

x0
, ~13!

y5y~DH!5
2zj0

x0K1~x0!
K0~x!, ~14!
r

c-

e

.37

dy~DH!

dx
52

2zj0

x0K1~x0!
K1~x!52y~DH!

K1~x!

K0~x!
. ~15!

As the potential decreases quite fast from the surface of
particle and in order for the former Eq.~5! to be valid in the
neighborhood of it we can consider the inequality on t
particle surface, namely,

y~x0!5
2zj0

x0K1~x0!
K0~x0!!1. ~16!

In general in a polyelectrolyte the real charge is lessened
a factora because of the presence of counterions within
defining surface of the cylinder, correspondingly in t
former equationsj0 has to be replaced byj5aj0. Setting
the former equation equal to 1021 upper limits forj andl,
jup andlup, for given values ofa andk, can be derived. The
valuesjup andlup will satisfy the condition given by Eq.~5!
in the neighborhood solution surrounding the partic
namely,

jup51021
x0K1~x0!

2zK0~x0!
~17!

and the condition for the linear charge densityl on the par-
ticle surface:

lup5S e0

l B
D jup. ~18!

Figure 1 showsjup andlup as a function of the Debye lengt
for z51 and z52 and different particle sizes. Numerica
integration of Eq.~2! is obtained by Runge-Kutta method i
which Eq. ~2! is transformed in a system of coupled firs
order ordinary differential equations, namely,

dy1

dx
5y2 ,

~19!

dy2

dx
5sinh~y1!2

y2

x
,

with y15y.
Stigter @3,4# gives the solution of Eq.~2! in terms of a

correction factor of an analytical expression derived with
help of the Debye-Hu¨ckel approximation.

As the set of Eqs.~19! represent a second order nonline
differential equation we used an adaptive step-size con
subroutine, odeint, from Ref.@8#, joining the main program
with subroutines: derivs, odeint, rkqs, rkck, bessi0, bes
bessk0, bessk1.~The program is available on request.! We
start the integration at low potentials, where Eqs.~14! and
~15! are valid, then the initial conditions for the set of Eq
~19! are

~y1 ,y2!5S yDH~x1!,2yDH~x1!
K1~x1!

K0~x1! D . ~20!

We integrate, as usual, backward,x1→x0.
In Fig. 2 is shown an application of this procedure

obtain the potential profile of DNA immersed in a 100 mM
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solution of a symmetrical monovalent electrolyte. The ste
of the procedure to calculate the electrical fluctuations
molecular or colloidal solutions are the following@1#:

~1! Identification of the molecular-ionic capacitor of th
system. The capacitance is given by

C~r !5U Q

ca~r !2ca~a!
U5 ze0

kTU Q

ya~x!2ya~x0!
U, ~21!

with Q the charge on the particle or molecule, andca(r ) the
potential of the ionic atmosphere, a the distance from the
center to the surface of the particle or molecule, andr the
distance from the center to a point inside the surround
solution.

~2! Estimation of the resistanceR(r ) or the electrical re-
sistivity r of the path associated with the capacitance~elec-
trical path! and then the relaxation timet is

t5R~r !C~r !5ee0r. ~22!

~3! The voltage and field mean square fluctuations
given by

FIG. 1. Representation of Eqs.~17! and~18! for monovalent and
bivalent symmetrical electrolyte solution.
s
n

g

e

^@ca~r !2ca~a!#2&5
kT

C~r !
,

^@Er~r !#2&5
^@ca~r !2ca~a!#2&

r 2
. ~23!

~4! The spectral density of the mean square of the fl
tuational potential and field are given by

$@ca~r !2ca~a!#2%v5
2tkT

C~r !@11~vt!2#
,

$@Er~r !#2%v5
$@ca~r !2ca~a!#2%v

r 2
. ~24!

~5! The mean square of the fluctuational potential a
field averaged in a timeDt are given by

^@ca~r !2ca~a!#2&
t

5
kT

C~r ! F t

Dt G@12e2Dt/t#,

^@Er~r !#2&
t

5
^@ca~r !2ca~a!#2&

t

r 2
. ~25!

The potential of the ionic atmosphere, ca(r ), is the contri-
bution of the cloud to the potential at the site of the cent
ion or particle. It can be written as

ca~r !5c~r !2cbare~r !, ~26!

wherecbare(r ) is the potential of the polyion or particle du
solely to the charge on the particle itself~without the solu-
tion!.

Correspondingly for the dimensionless potential, we ha

FIG. 2. Potential profile~Runge-Kutta solution! for DNA
(j054.24, a50.5, a512.5 Å, x051.298,y052.693! immersed in
100 mM ~1-1! electrolyte.d is the distance from the DNA surface
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ya~x!5y~x!2ybare~x!. ~27!

In our case of a rodlike polyelectrolytecbare(r ) is given by

cbare~r !5cbare~a!1
1

2pee0

Q

L
lnS a

r D
5cbare~a!1

2kT

e0
j lnS a

r D ~28!

FIG. 3. Voltage and field fluctuations~Runge-Kutta solution! for
DNA ( j054.24,a50.5,L5103 Å, a512.5 Å! immersed in 100 m
M ~1-1! electrolyte.d is the distance from the DNA surface.

FIG. 4. Spectral density~Runge-Kutta solution! of the mean
square of the fluctuational potential and field as a function of
fluctuational frequencyv for DNA: L5103 Å, a512.5 Å, c5100
mM NaCl, rNaCl51.0 Vm, t57.1310210 s, r 5k2159.73 Å,
C(k21)53.45310215 F.
correspondingly

ybare~x!5ybare~x0!12zj lnS x0

x D . ~29!

In case of using the Debye-Hu¨ckel approximation, from Eqs
~14!, ~27!, and~29! we obtain

ya
~DH!~x!52zjF K0~x!

x0K1~x0!
2ybare~x0!2 lnS x0

x D G . ~30!

From Eqs. ~21! and ~30!, the capacitance of the ionic
molecular capacitor will be given by

C~x!52pLee0FK0~x!2K0~x0!

x0K1~x0!
1 lnS x

x0
D G21

. ~31!

The corresponding fluctuating magnitudes can be calcula
substituting this expression forC(x) in the corresponding
Eqs.~23!–~25!.

In case the Debye-Hu¨ckel approximation is not valid, we
can consider the following equation obtained from Eqs.~6!,
~13!, ~21!, ~27!, and ~29!, ready for computational calcula
tion:

C~x!52pLee0Fy~x0!2y~x!

2zj
1 lnS x

x0
D G21

. ~32!

In Figs. 3 and 4 are represented Eqs.~23! and ~24!, respec-
tively, for DNA immersed in 100 mM NaCl solution and in
Fig. 5 is represented the resistance and capacitance@from
Eqs.~22! and~32!# in the neighborhood of a DNA molecul
in the same solution.

e

FIG. 5. Resistance and capacitance of the solution as a func
of the distanced from the DNA surface~Runge-Kutta solution!:
L5103 Å, a512.5 Å, c5100 mM NaCl, rNaCl51.0 Vm, t57.1
310210 s, r 5k2159.73 Å.
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FIG. 6. Voltage and field fluctuations as a function ofk21 and the distanced from the polyelectrolyte surface, Debye-Hu¨ckel approxi-
mation.
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III. RESULTS AND DISCUSSION

Figures 6~a! and 6~b! show the voltage and field fluctua
tions as a function of theDebye-Hu¨ckel lengthk21 for given
values of particle sizes at a distanced525 Å from the poly-
electrolyte surface. It is interesting to observe these figu
together with Figs. 3~a! and 3~b! of Ref. @1#, which givek21

versus the concentration for monovalent and bivalent e
trolytes.

Examination of Fig. 6 indicates that the fluctuations d
minish as particle sizes increase; as a consequence large
ticles produce electrical stabilization in their neighborhoo

It can also be observed that fluctuations are not quite s
sitive to ionic concentrations for large particles. Volta
es

c-

-
par-
.
n-

fluctuations, for our range ofk21 ~this range covers most o
the current biological and physical chemistry systems! run
from 1 to 12 mV, with the corresponding field fluctuatio
spanning a range of 10 to 400mV Å 21.

Figures 6~c!, 6~d!, and 6~e! furthermore show voltage an
field fluctuations as a function of the distanced from the
particle surface for a given value ofk21 ~10 Å! and particle
sizes. It can be observed that voltage fluctuations incre
substantially with increasingd, especially for small particles
A maximum of the field fluctuations occurs at a distance
the order ofk21. The effect of electrical stabilization with
increasing of particle size also becomes apparent here.
ure 3 also shows a maximum of the field fluctuations.
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57 2109THERMAL ELECTRICAL FLUCTUATIONS AROUND A . . .
The importance of these fluctuations was emphasized
Oosawa@9,10#, who analyzed, among other things, the effe
of field fluctuations on a macromolecular system. He e
mated the effect of fluctuation on the rate constants and
average probability of the molecule in each state. He poin
out that the relaxation time of the ionic atmosphere is mu
shorter than the relaxation time of a conformational cha
of a macromolecule in the solution. Therefore Eqs.~25! are
useful to estimate the fluctuating potential or field affecti
the probability of the conformational change.

Weaver and Astumian@11# have presented a calculatio
of the effects of weak fields upon cells. Procopio and For´s
@12#, using the fluctuation-dissipation theorem, have p
sented a calculation of the voltage fluctuations across
membranes.
et
y
t
i-
e
d
h
e

-
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Molecular systems are sufficiently small and fast as
both sense and respond to local fluctuating electrical fie
~Lauger @13#, Hille @14#! or for an efficient processing o
information in the form of fast conformational changes@15#.
Therefore, in order to explain any possible mechanism at
molecular level, which involves an electric process, the
fluctuations have to be considered.

ACKNOWLEDGMENT

This work was partially supported by the Conselho N
cional de Desenvolvimento Cientı´fico e Tecnolo´gico ~CNPq,
Brazil!.
ng
@1# J. A. Fornés, J. Colloid Interface Sci.186, 90 ~1997!.
@2# D. Stigter, Biophys. J.69, 380 ~1995!.
@3# D. Stigter, J. Colloid Interface Sci.53, 296 ~1975!.
@4# J. A. Schellman and D. Stigter, Biopolymers16, 1415~1977!.
@5# P. Debye and E. Hu¨ckel, Z. Phys.24, 185 ~1923!; 24, 305

~1923!.
@6# G. N. Lewis and M. Randall, J. Am. Chem. Soc.43, 1112

~1921!.
@7# J. O’M. Bockris and A. K. N. Reddy,Modern Electrochemis-

try, Vol. 1 ~Plenum Press, New York, 1977!, p. 251.
@8# W. H. Press, B. P. Flannery, S. A. Teukolsky, and W. T. V
 -

terling, Numerical Recipes: The Art of Scientific Computi
~Cambridge University Press, Cambridge, 1985!.

@9# F. Oosawa, J. Theor. Biol.39, 373 ~1973!.
@10# F. Oosawa, J. Theor. Biol.52, 175 ~1975!.
@11# J. C. Weaver and R. D. Astumian, Science247, 459 ~1990!.
@12# J. Procopio and J. A. Forne´s, Phys. Rev. E51, 829 ~1995!.
@13# P. Lauger, Physiol. Rev.67, 1296~1987!.
@14# B. Hille, Ionic Channels of Excitable Membranes~Sinauer As-

sociates, Inc. Publishers, Sunderland, MA, 1992!.
@15# J. A. Fornés, J. Colloid Interface Sci.177, 411 ~1996!.


