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Thermal electrical fluctuations around a charged colloidal cylinder in an electrolyte
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We apply the method developed in by J. Farhg Colloid Interface Scil86, 90 (1997] to determine the
natural electrical thermal fluctuations and their spectral distribution across two points near a charged colloidal
cylinder in a ¢—z) symmetrical electrolyte. For the general case we performed a numerical integration of the
Poisson-Boltzmann equation. For the case of low potentials the DebgkeHapproximation allowed for
analytical evaluation. We find a decrease of electrical fluctuations as cylinder radii increase. Consequently,
large particles produce electrical stabilization in their neighborhood. It can also be observed that the fluctua-
tions are not sensitive to ionic concentrations for large parti¢®5063-651X98)01602-X|

PACS numbd(s): 87.15.Da

[. INTRODUCTION Poisson equationAy=—pleeg with p=zey(n,—n_)
=nze)| expzeylkT)—expeey/kT)l=—2nzgsinhzey/KT),
The importance of electrical fluctuations in biological sys-with n, andn_ being theaverageconcentration of the ionk.
tems was raised by several authors, see bibliograpi{t]in Equation(1) can be written, following Stigte3], as
for references on this subject. [fh] we developed a method
to determine the natural electrical thermal fluctuations and 1d/ dy . 5
their spectral distribution across two points in the neighbor- x dx| X dx =sinhy), @
hood of a spherical electrically charged particle immersed in
an ionic solution. The essence of the method is to considevherey=zey/kT andx=«r are the dimensionless poten-
the charged sphere with its surrounding ionic atmosphere déal and distance, respectively being the distance from the

a capacitor and a resistor in parallel. cylinder axis, perpendicular to the surface. At the surface of
In this paper we apply this method to estimate the electrithe cylinderx=xy=«ka andy=y,=z&o/KT.
cal fluctuations(field and potentidl around rodlike rigid The SI system of units was employed throughout, in Eq.

polyelectrolyte bearing uniform surface charge distribution(1) €y is the permittivity of vacuum &,=8.85X 1012
dispersed in an aqueous salt solution of pointlike ions. WeC2 N1 m™2), € is the dielectric constant of the mediugg,
performed computer simulations to solve the Poissonthe electron chargee=1.602<101° C), and«, called the
Boltzmann (PB) equation and also developed formulas to Debye-Hiekel reciprocal lengttparametef5], is given by
calculate the fluctuations in the case of a low potential, ) 5
Debye-Hickel approximation(linearized PB equation We , €0 D »_ 200G5NA 12 )
apply the formalism to a DNA solution, which is a well- K cekT Mio%i = cekT |2 Cizi
known model for a biopolymer. We show plots of the poten-

tia_l_l and electric field fluctuations as a function of the Debye-The quantityl = %EciziZ quantifies the charge in an electro-
Hiickel lengthx~* and distance from the polyelectrolyte |yte solution and is called thienic strengthafter Lewis and

surface for several molecular sizes. Randall[6]. In the case of a solution of a symmetrica{z)
electrolyte we have

. 3

Il. ELECTRICAL FLUCTUATIONS PERPENDICULAR
2(eg2)? 2(egz)?
TO THE POLYELECTROLYTE AXIS 2_ 0 n= 03, 0
€o€ekT

€o€ekT NaC, @
We consider a rigid rodlike molecule or particle of radius 0

a (for an excellent bibliography on this subject see FEE])z wherek is Boltzmann's constantk=1.381x 10™2 J/K), T
lengthL>a, so that end effects may be neglected, with ajs the absolute temperaturl, is Avogadro’s constant, and
chargeQ distributed uniformly over the surface with an elec- ¢ the solution concentration in moles/liter.

trical surface potential, immersed in a solution of pointlike |y case the ratio of the electrical to the thermal energy of
ions of a symmetrical electrolyte of valenzevith n ions per  the ions is very small, namely,

m3. The law governing the potential profile and conse-

quently the ionic distributiori“diffuse” layer) from the sur- zegi(r)
face of the particle is given by the PB equation o <Loy=<l ®
A= ZzeonSin Z&gy ) (This condition comes to approximate diale,y(r)/kT]
€€ KT )’ ~z&(r)/KT in the Poisson-Boltzmann equatipiEquation

(2) transforms, sinh()=y, into the modified Bessel equation
whereA is, in our case of cylinder symmetry, the radial partof zeroth order, with the boundary conditions,y) = (,0)
of the Laplace operatofThe origin of this equation is the and
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This last condition comes from Gauss's electric flux theorenf™> the potential decreases quite fast from the surface of the

with the surface charge density= Q/(2mal). The analytic

solution (Debye-Huckel approximatioph satisfying the
former boundary conditions is
Z& Q
—yDOH =
y=y ( kT)ZTrLeeoonl(xO) KoX). (0
The corresponding derivative function is
dy®" _ (ze Q
=== K1(x). ()
dx kT 27TLE€0XOK1(X0)

In the former equation&y(x) and K,(x) are the modified

Bessel functions of zeroth and first order, respectively. Fo

y—0, Eq.(7) is an exact solution of Eq2).

It is necessary to formulate a few definitions in order to
put the equations into the current nomenclature of polyelec-

trolyte science, namely,

€o

€o

;.
B

A= b= 9)

L

where\ is the linear charge densityp=L/N is the linear
charge spacing, antl is the number of charged polymer
groups. TheBjerrum length § is the distance at which the
Coulombic energy is equal thT (Iz=7.13 A at 25°C in
watep (for an excellent English reference on this subject se
[7]) namely,

ey’

|B=W=§ob- (10

The dimensionless ratié,, which is a reduced linear charge
density, is particularly usefiia DNA molecule, for instance,

particle and in order for the former E(p) to be valid in the
neighborhood of it we can consider the inequality on the
particle surface, namely,

228
Y(Xg) = XoK1(Xg)

Ko(Xg)<%1.
XO) 0( O)

(16)

In general in a polyelectrolyte the real charge is lessened by
a factora because of the presence of counterions within the
defining surface of the cylinder, correspondingly in the
former equationst, has to be replaced by= a&;. Setting

the former equation equal to 18 upper limits foré and\,
&ypandXy,, for given values ol andx, can be derived. The
P/aluesfup and\ , will satisfy the condition given by Eq5)

in the neighborhood solution surrounding the particle,
namely,

1 XOKl(XO)

2zKyo(Xo)

and the condition for the linear charge densityn the par-
ticle surface:

§up=10" 17

€o
Aup= E gup- (kS)

Figure 1 shows, and\ , as a function of the Debye length

Ror z=1 andz=2 and different particle sizes. Numerical

integration of Eq(2) is obtained by Runge-Kutta method in
which Eg. (2) is transformed in a system of coupled first-
order ordinary differential equations, namely,

dy;

=Y2,
d
§ (19

has two phosphate charges each at a helical spacing of 3.37

A, then &,=15/b=7.13x(2/3.37)=4.23]. As a conse-
guence the surface charge density can be written as

N
7= 2ma

€o

€o-

For DNA, a=12.5 A, Eq.(11) giveso=7.55x 10’ electric
charges m?2, which is 28 times less than that for a bidimen-
sional array of Cu atoms.

Also theDebye-Huekel reciprocal lengtlparameter [cf.
Eqg. (4)] can be written as

k?=8mz’lgn=10°X 87Z?IgNC. 12

Applying the former definitions Eq$6)—(8) transform in

dy\ 2z
(d—x T (19
0
2z&,
=yPM=———" _K(x), 14
Y=y = Ko 14

2_

2 —sinh(y;) - 22,
with y;=Yy.

Stigter [3,4] gives the solution of Eq(2) in terms of a
correction factor of an analytical expression derived with the
help of the Debye-Hckel approximation.

As the set of Eqs(19) represent a second order nonlinear
differential equation we used an adaptive step-size control
subroutine, odeint, from Ref8], joining the main program
with subroutines: derivs, odeint, rkgs, rkck, bessiO, bessil,
bessk0, besskiThe program is available on requésiVe
start the integration at low potentials, where Effs) and
(15) are valid, then the initial conditions for the set of Egs.
(19) are

K1(Xq)
Ko(x1) /"
We integrate, as usual, backward,— X.

In Fig. 2 is shown an application of this procedure to
obtain the potential profile of DNA immersed in a 100Mm

DH(

(Y1,¥2) = YPH(x1), —yPH(xq) (20
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FIG. 1. Representation of Eq4.7) and(18) for monovalent and {[a(r)—a(a)] }w=—2,
bivalent symmetrical electrolyte solution. C(N[1+(wn)]
i i {[lpa(r)_wa(a)]z}
solution of a symmetrical monovalent electrolyte. The steps (E(1)]3 .= - © (24)

of the procedure to calculate the electrical fluctuations in
molecular or colloidal solutions are the following]: _ _
(1) Identification of the molecular-ionic capacitor of the (5 The mean square of the fluctuational potential and

system. The capacitance is given by field averaged in a timat are given by
Q z6 Q ! 5 kT 7'} Ay
bl T e Y ar_aa :——1—8 T,
O @ Ty yaxa 2 (L)~ 9@ = iy | ]

with Q the charge on the particle or molecule, afdr) the ¢ ! >
potential of the ionic atmosphera the distance from the e el ([#a(r)— (@) ]%)
i ([E(NP) = - .
center to the surface of the particle or molecule, aritie
distance from the center to a point inside the surrounding
solution. The potential of the ionic atmospherg,(r), is the contri-
(2) Estimation of the resistand®(r) or the electrical re- bution of the cloud to the potential at the site of the central
sistivity p of the path associated with the capacitafelec-  ion or particle. It can be written as
trical path and then the relaxation timeis
path Pal1)= )~ ad ), (26

7=R(r)C(r) = e€gp. (22)  wherey,{r) is the potential of the polyion or particle due
solely to the charge on the particle itsélfithout the solu-
(3) The voltage and field mean square fluctuations areion).
given by Correspondingly for the dimensionless potential, we have

(25
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FIG. 3. Voltage and field fluctuatiof®unge-Kutta solutionfor
DNA (£,=4.24,2=0.5,L=10% A, a=12.5 A) immersed in 100 m

FIG. 5. Resistance and capacitance of the solution as a function
M (1-1) electrolyte.d is the distance from the DNA surface.

of the distanced from the DNA surface(Runge-Kutta solution
L=10° A, a=12.5 A, ¢=100 mM NaCl, pnyac=1.0 Om, 7=7.1
Ya(X)=Y(X) = Ypard X). (270 x109s,r=xk"1=9.73 A.

In our case of a rodlike polyelectrolyi,{r) is given by  correspondingly

_ Q (a Xo
Yoard 1) = Ypard @) + Tmee Ty ybare(x)zybare(xo)JrZZgln(;). (29
2KkT a . . L
= thpad @)+ — €| — (28) In case of using the Debye-Idkel approximation, from Egs.
€o r (14), (27), and(29) we obtain
2.0 400
: : DNA | : Ko(x) Xo
e YO () =228~~~ Vhard Xo) —In| —| | (30)
250 XoK1(Xo) X
\ From Egs.(21) and (30), the capacitance of the ionic-
£- 15 \ %00 molecular capacitor will be given by
% 50 Ko(X) — Ko(Xo) o
2 ; ; ; = C(x)=2mLeeg ————— +In| — 31
& = (x)=2mlec XoK1(Xo) 0 @D
Za 1.0 : : — 200 3
< : : é 3 The corresponding fluctuating magnitudes can be calculated
= f 1w 3 substituting this expression fa(x) in the corresponding
< : : : e Egs.(23)-(25).
z : : : = In case the Debye-Hikel approximation is not valid, we
05 : : i can consider the following equation obtained from E@s,
(13), (212), (27), and (29), ready for computational calcula-
— 50 tion:
. . Xo) — Y(X x|\t
D A C(x)=2wLeeo%+ln(x—” . (32
o [(rad/s)10%] 0

FIG. 4. Spectral densityRunge-Kutta solutionof the mean [N Figs. 3 and 4 are represented E(®3) and (24), respec-
square of the fluctuational potential and field as a function of theively, for DNA immersed in 100 il NaCl solution and in
fluctuational frequency» for DNA: L=10° A, a=12.5 A,c=100 Fig. 5 is represented the resistance and capacitbinoce
mM NaCl, pnac=1.0 Om, 7=7.1x1071% s, r=,"1=9.73 A,  EQs.(22) and(32)] in the neighborhood of a DNA molecule
C(k 1)=3.45x10"1°F. in the same solution.
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FIG. 6. Voltage and field fluctuations as a function«of' and the distance from the polyelectrolyte surface, Debye-¢kel approxi-
mation.

Ill. RESULTS AND DISCUSSION fluctuations, for our range of ! (this range covers most of
the current biological and physical chemistry systemm
tions as a function of thBebye-Hiekel lengthik L for given from 1 to 12 mV, with the correspg?ding field fluctuations
values of particle sizes at a distarte25 A from the poly- ~ SPanning a range of 10 to 4QoV AL
electrolyte surface. It is interesting to observe these figures Figures &), 6(d), and @e) furthermore show voltage and
together with Figs. @) and 3b) of Ref.[1], which givex 1 f|eld- fluctuations as a_functlon of the distandefrom t_he
versus the concentration for monovalent and bivalent elecParticle surface for a given value af * (10 A) and particle
trolytes. sizes. It can be observed that voltage fluctuations increase

Examination of Fig. 6 indicates that the fluctuations di- substantially with increasind, especially for small particles.
minish as particle sizes increase; as a consequence large paArmaximum of the field fluctuations occurs at a distance of
ticles produce electrical stabilization in their neighborhood. the order ofx 1. The effect of electrical stabilization with

It can also be observed that fluctuations are not quite senncreasing of particle size also becomes apparent here. Fig-
sitive to ionic concentrations for large particles. Voltageure 3 also shows a maximum of the field fluctuations.

Figures 6a) and &b) show the voltage and field fluctua-
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The importance of these fluctuations was emphasized by Molecular systems are sufficiently small and fast as to
Oosawd 9,10|, who analyzed, among other things, the effectboth sense and respond to local fluctuating electrical fields
of field fluctuations on a macromolecular system. He esti{Lauger[13], Hille [14]) or for an efficient processing of
mated the effect of fluctuation on the rate constants and thiformation in the form of fast conformational changés).
average probability of the molecule in each state. He pointedtherefore, in order to explain any possible mechanism at the
out that the relaxation time of the ionic atmosphere is muchmglecular level, which involves an electric process, these
shorter than the relaxation time of a conformational chang@ctuations have to be considered.
of a macromolecule in the solution. Therefore E@S) are
useful to estimate the fluctuating potential or field affecting
the probability of the conformational change.
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